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Abstract: Isothiocyanates (ITCs), found in edible plants such as cruciferous vegetables, are a group of
reactive organo-sulfur phytochemicals produced by the hydrolysis of precursors known as glucosino-
lates. ITCs have been studied extensively both in vivo and in vitro to define their therapeutic potential
for the treatment of chronic health conditions. Therapeutically, they have shown an intrinsic ability to
inhibit oxidative and inflammatory phenotypes to support enhanced health. This review summarizes
the current evidence supporting the observation that the antioxidant and anti-inflammatory activities
of ITCs temper the pathogenic effects of a group of reactive metabolites called advanced glycation
end products (AGEs). AGE exposure has significantly increased across the lifespan due to health risk
factors that include dietary intake, a sedentary lifestyle, and comorbid conditions. By contributing
to a chronic cycle of inflammatory stress through the aberrant activation of the transmembrane
receptor for AGE (RAGE), increased AGE bioavailability is associated with chronic disease onset,
progression, and severity. This review debates the potential molecular mechanisms by which ITCs
may inhibit AGE bioavailability to reduce RAGE-mediated pro-oxidant and pro-inflammatory pheno-
types. Bringing to light the molecular impact that ITCs may have on AGE biogenesis may stimulate
novel intervention strategies for reversing or preventing the impact of lifestyle factors on chronic
disease risk.

Keywords: isothiocyanate; advanced glycation end products; receptor for advanced glycation end
products; chronic disease; inflammation; oxidative stress; sulforaphane; phenethyl isothiocyanate;
allyl isothiocyanate; benzyl isothiocyanate; lifestyle

1. Introduction

Isothiocyanates (ITCs) are abundant naturally occurring molecules that have nu-
merous biological activities. Molecular studies supported by pre-clinical and clinical
assessments demonstrate that ITCs possess inherent antibacterial, antioxidant, and anti-
inflammatory functions that may serve to prevent and/or treat chronic health condi-
tions [1–3]. ITC anti-inflammatory potential is largely conferred through their ability to
increase the transcriptional activation of antioxidant enzymes that inhibit inflammatory
processes to restore metabolic balance [1,2]. Due to multidisciplinary research, progress has
been made in understanding the molecular underpinnings that confer the anti-inflammatory
potential of ITCs.

There is growing evidence to support that the antioxidant and anti-inflammatory
activities of ITCs influence the accumulation and pathogenicity of a heterogenous group of
lifestyle-associated reactive metabolites called advanced glycation end products (AGEs).
As the final and irreversible consequence of non-enzymatic glycoxidation (the Maillard
reaction), AGE adducts form on biological macromolecules and accumulate in tissues
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and organs over time, contributing to structural and functional degeneration [4–6]. AGE-
bound substrates serve as high affinity ligands to the receptor for advanced glycation end
products (RAGE or AGER). RAGE function is a key regulator of immune, metabolic, and
oxidative pathways, and aberrant activation of RAGE is associated with unchecked chronic
inflammation, contributing to chronic disease onset and complications [7,8].

Increased chronic disease burden, especially in developed countries, is recognized as
being driven in no small part by lifestyle-associated risk factors that promote persistent
inflammation [9,10]. ITC therapeutic potential against AGEs is significant because we are
now being exposed to increasing levels of AGE metabolites due to lifestyle risk factors
that include, but are not limited to, food intake, sedentary habits, the built environment,
and disease-related comorbidities. This review focuses on four specific ITCs associated in
the literature with AGE-RAGE inhibition (Figure 1A). It discusses how ITCs represent a
novel therapeutic approach with which to address the influence of AGE-RAGE-mediated
inflammatory stress on chronic disease risk. It discusses how the mechanisms responsible
for the inherent antioxidant and anti-inflammatory activities of ITCs may disrupt a per-
sistent cycle of AGE-RAGE-induced oxidative and metabolic dysfunction which can be
exacerbated by lifestyle risk factors that lead to chronic inflammatory stress.
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2. The Anti-Inflammatory Potential of Isothiocyanates
2.1. Isothiocyanates

ITCs are found within plants as water-soluble non-reactive glucosinolate precursors
which comprise β-thioglucoside N-hydroxysulfates and are defined by one specific side
chain and a sulfur-linked β-D-glucopyranose moiety. There are ~120 naturally occurring
glucosinolate side chains (e.g., aryl-, alkyl-, indole-, benzoate-, and glycosylated) that are
distributed across 16 plant families and encompass hundreds of different species [11,12].
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Most notably, cruciferous vegetables such as broccoli, brussels sprouts, cabbage, and
cauliflower contain multiple glucosinolates, but are often characterized by one dominant
type. Glucosinolate precursors are converted to ITCs by enzymatic hydrolysis via myrosi-
nase (a β-thioglucosidase). Myrosinase is released upon the physical disruption of plant
cells due to factors such as microbial or insect attack. It is found within the human gut
microbiome after the ingestion of cruciferous vegetables, resulting in the conversion of
glucosinolates to ITCs. While physical disruption can lead to the activation of myrosinase,
myrosinase itself is inactivated (irreversibly denatured) by processes such as the cooking of
food [11,12].

The benefits of orally delivered ITCs have been realized by delivering them directly, by
supplying their precursor glucosinolates and counting on intestinal microbial myrosinase
and/or plant myrosinase to convert them to ITC (if delivered as fresh, raw vegetables), or by
co-delivering myrosinase in dietary supplements. The ITC, when removed from their plant
sources, are by and large much less stable and have a relatively short window in which to
be delivered as compared to the glucosinolates from which they are derived. This can be
problematic from the perspective of conducting controlled clinical trials and supplying these
compounds as supplements, but is not particularly relevant when delivering fresh foods
(e.g., crucifers such as cabbage, mustard, cauliflower, broccoli sprouts, moringa, or other
glucosinolate-containing vegetables). The safety, bioavailability, and pharmacokinetics
of these compounds has been extensively studied (there have now been over 125 clinical
studies on sulforaphane (SF) alone [13–15]). The so-called “double-edged sword” of up-
regulating the kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid
2-related factor 2 (Nrf2) pathway must, however, be considered when applied to patients
with tumors or other actively growing cancers. Nrf2 upregulation supports growing cells,
so pharmacologic doses of Nrf2 inducers (ITCs) may not be advisable, and this is still a
matter of research and discussion [16,17].

2.2. Isothiocyanates and Their Effects on Metabolism and Health

ITCs, and in particular SF, have been shown to have wide-ranging and manifold effects
on biological functions in cell and animal models and in human clinical trials [3,13]. They
have shown significant therapeutic potential through their ability to increase the transcrip-
tion of antioxidant enzymes, confer antibacterial activity, and to promote anti-inflammatory
responses that can ameliorate metabolic changes associated with chronic disease onset and
complications [1,2]. There is abundant clinical evidence for the efficacy of ITCs in human
beings with chronic disease, which have been reviewed for both SF [14] and PEITC [18].
Based primarily on their detoxification capacity (primarily via the Keap1-Nrf2 pathway)
and their anti-inflammatory activities, they have broad applicability to address a variety
of disease states including cancer prevention and therapy [18–20], neurodevelopmental
and neurodegenerative conditions [3], diabetes [21], ophthalmic conditions [22], kidney
disease [23], diseases of the liver [24], intestinal inflammation and GI disorders [25,26], and
cardiovascular disease [27]. Clinical studies initially focused on the anti-cancer potential of
ITCs. These studies support the anti-tumorigenic efficacy for ITCs in a variety of cancers,
including breast, gastrointestinal, lung, gastric, and prostate cancers [28–33]. Other chronic
conditions where ITCs have more recently been shown to be effective agents include car-
diovascular disease and type 2 diabetes (T2D), as well as those associated with metabolic,
neurological, and musculoskeletal dysregulation and the overall aging process [28,34–42].

2.3. Individual ITCs Associated with AGE-RAGE Function
2.3.1. Sulforaphane (SF)

SF is the most extensively studied ITC and primarily occurs in plants in the form
of its precursor glucoraphanin [11]. Glucoraphanin treatment has shown efficacy in con-
trolling circulating low-density lipoprotein cholesterol in healthy volunteers as well as
lowering the risk of stroke and cardiovascular complications [43]. The efficacy of SF has
been demonstrated against several chronic conditions through pathways associated with
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AGE-RAGE-related stress responses within the context of diabetes, hepatocellular car-
cinoma, rheumatoid arthritis, age-related macular degeneration, and autism spectrum
disorder [35,44–51]. This efficacy is commonly achieved through the reduction of the tran-
scriptional activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB),
reducing the expression of a series of inflammatory mediators including TNFα, inducible
nitric oxide synthase (iNOS), interleukin-1β (IL-1β), interleukin-17 (IL-17), interleukin-6 (IL-
6), interferon-γ (IFN-γ), cyclooxygenase 2 (COX-2), prostaglandins, and nitric oxide [44–48].
For example, the administration of broccoli sprout powder high in SF led to a reduction
in diabetes-related complications such as retinal photoreceptor cell degeneration and car-
diovascular damage, while improving insulin sensitivity, lipid profiles, and serum glucose
levels [35]. SF influences pathways associated with AGE-RAGE-related stress responses
within the context of diabetes, hepatocellular carcinoma, rheumatoid arthritis, age-related
macular degeneration, and autism spectrum disorder [35,49–57].

2.3.2. Phenethyl Isothiocyanate (PEITC)

PEITC is predominantly found as its precursor gluconasturtiin in watercress, wasabi,
and garden cress [11]. PEITC was the first ITC to be studied clinically. Since being intro-
duced in clinical research, studies have largely been limited to its assessments of cancer,
DNA damage, and liver toxicity [33,38,39,58,59]. PEITC has been shown to inhibit tumor
progression in models of osteosarcoma, breast, cervical, lung, colon, brain, and prostate
cancer by impacting oxidative stress, inflammation, and cellular signaling [42,60,61]. PEITC
has been shown to influence AGE-RAGE-mediated stress responses within the context
of diabetes and cancer [53,55]. PEITC demonstrates its anti-inflammatory process in the
abovementioned disorders via reducing NF-κB, focal adhesion kinase (FAK), extracel-
lular signal-regulated kinase 1 (ERK), protein kinase B (Akt), heat shock response, and
mitogen-activated protein kinases (MAPK) [61–63]. PEITC is also associated with increased
transcriptional activation of Nrf2, positively influencing glucose metabolism and insulin
sensitivity, and accompanied by reduced oxidative stress and glycolysis [31,64].

2.3.3. Allyl Isothiocyanate (AITC)

AITC occurs naturally as its precursor sinigrin and contributes to the pungent tastes
of mustard, radish, horseradish, and wasabi [11]. While interest is growing, limited
studies have focused on AITC. However, AITC has been evaluated as a possible treatment
for respiratory diseases like chronic obstructive pulmonary disease (COPD) and asthma,
through its effects on the inflammatory response and increased expression of multidrug
resistance-associated protein 1 (MRP1) in the lungs [56–58]. AITC is also associated with
reduced inflammation in diseases such as osteoarthritis, inflammatory bowel disease,
and obesity-induced inflammation, contributing to the activation of the transient receptor
potential ankyrin 1 (TRPA1), ERK signaling, and the inhibition of monocyte chemoattractant
protein-1 (MCP-1) [59–61]. However, to our knowledge, direct associations between AITC
and AGE biogenesis have not yet been defined.

2.3.4. Benzyl Isothiocyanate (BITC)

Glucotropaeolin, the precursor of BITC, is the predominant glucosinolate in garden
cress, red cabbage, and papaya [11]. Of the four main ITCs discussed within this review,
BITC is one of the least studied, with research largely restricted to in vitro cancer-related
studies. BITC has been shown to promote G(2)/M phase arrest and subsequent apoptosis
in melanoma, osteogenic sarcoma, and prostate cancer experimental models through a
reduction in cyclin A, cyclin D1, cyclin-dependent kinase 2, and inhibition of DNA damage
and Aurora A activity [65–67]. The efficacy of BITC is associated with its anti-inflammatory
and antioxidant capabilities and its influence on cell cycle control, mitochondria function,
and apoptosis, as well as its anti-bacterial and fungicidal properties, all of which are
associated with reducing chronic inflammation in cells and tissues. However, to our
knowledge, direct associations between BITC and AGE biogenesis have not been defined.
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3. Advanced Glycation End Products (AGEs) Fuel Inflammatory Stress
3.1. Non-Enzymatic Glycoxidation and AGE Formation

AGEs are a highly heterogenous group of molecules that represent the final irreversible
product of non-enzymatic glycoxidation (also called the Maillard reaction). This process is
a complex series of chemical reactions which occurs when reactive carbonyls on oxidative
and metabolic intermediates spontaneously react with electrophilic amines on biologi-
cal macromolecules, leading to the reversible formation of Schiff’s bases and Amadori
products [68–70]. Failure to remove or neutralize pools of Schiff’s base and Amadori
products generates reactive carbonyl compounds such as glyoxal (GO), 3-deoxyglucosone
(3DG), and methylglyoxal (MGO) (Figure 1B). Further structural rearrangement of reactive
carbonyls then leads to the irreversible formation of AGE post-translational modifica-
tions such as N(6)-carboxymethyllysine (CML), methylglyoxal-derived hydroimidazolone
(MG-H1) and Amadori-phosphatidylethanolamine (PE) on protein, lipid, and DNA sub-
strates (Figure 1C) [68–70]. Inflammatory processes that include the peroxidation of lipids,
metabolism of glucose, and the activation of the polyol pathway fuel non-enzymatic gly-
coxidation and AGE formation by supplying a superfluous source of reactive carbonyls [8].
Considered a part of the natural process of growing older, excessive AGE formation causes
the crosslinking and misfolding of biological macromolecules, promoting their accumu-
lation in the body. This in turn leads to the functional and structural decline of cells and
tissues to accelerate their biological aging. The accumulation of AGEs and their increased
bioavailability negatively impacts the onset of, and complications associated with, mul-
tiple chronic conditions, including diabetes mellitus, cancer, cardiovascular disease, and
neurodegenerative disorders [4–6,71–73].

3.2. Lifestyle-Associated AGEs

Largely due to modern lifestyle factors, we are now being exposed to increasing
amounts of AGEs, which studies have shown contribute to greater chronic disease risk as
we grow older. As reviewed, lifestyle factors such as regularly consuming an unhealthy
diet high in fat or sugar, not being physically active, and being exposed to environmental
exposure factors such as sunlight and pollution, can supply an additional source of reactive
carbonyls that can fuel endogenous non-enzymatic glycoxidation, leading to further AGE
formation [8,10,66,70,74,75]. In addition to increasing endogenous AGE formation, a
significant and growing source of exogenous AGE exposure is through the consumption
of heavily cooked and highly processed foods. AGE adducts are naturally present in
food. However, AGE content in food is rapidly increased by high heat and pressures
applied during the frying, grilling, and baking of food, as well as food manufacturing
processes such as retorting and extrusion. These processes rapidly increase non-enzymatic
glycoxidation rates in the food before consumption to drive AGE formation, serving
as a major source of exogenous exposure [10]. By fueling non-enzymatic glycoxidation
to increase both endogenous AGE formation and exogenous AGE exposure, lifestyle
factors can synergize to exacerbate AGE accumulation, bioavailability, and pathogenic
function (Figure 2) [8,68–70,72,73]. As reviewed, this is particularly relevant to underserved
populations, where social, environmental, and biological factors associated with health
inequity and chronic disease risk can lead to elevated AGE exposure [10,74,75]. ITCs are
natural products (phytochemicals, phytonutrients, bioactives) that are present in the food
supply and whose intake can be titrated simply by dietary changes (or supplementation).
Thus, besides their applicability as supplements for the wealthy countries of the world,
this strategy has global utility in underserved populations and lesser-developed countries,
where “drugging” diseases is not a realistic strategy. While assessed in a limited cohort,
AGE levels in clinical specimens of prostate cancer were found to be higher in tissue
and serum specimens from African American patients when compared with European
American patients [76].
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Figure 2. Overview of AGE-RAGE signaling and the impact of lifestyle. AGEs are formed when
reactive carbonyls react with electrophilic amines in a process called non-enzymatic glycoxida-
tion. Lifestyle factors and environmental exposures can serve to increase the available pool of
reactive carbonyls needed for endogenous AGE formation and/or increase our direct exposure to
pre-formed AGEs.

3.3. The Receptor for Advanced Glycation End Products (RAGE)

Mechanistically, AGE substrates serve as high-affinity ligands to RAGE, a pattern
recognition receptor and a member of the immunoglobulin superfamily [7,68]. RAGE acti-
vation by AGE can promote paracrine-mediated oxidative and metabolic stress in multiple
cell types and tissues to promote chronic inflammation (Figure 3). Physiologically, while
RAGE expression is generally restricted in cells, its expression in immune cells orchestrates
the host immune defense [7,68]. When bound by AGE, aberrant RAGE signaling leads to
inflammatory phenotypes through the activation of multiple signaling cascades such as
phosphatidylinositol-3-kinases and MAPK. This leads to the nuclear activation of master
transcriptional regulators including NF-κB, the signal transducer activator of hypoxia-
inducible factor 1, and STAT3 (Figure 3) [7,73]. The downstream consequence of aberrant
RAGE activation is the increased paracrine release of growth factors, adhesive molecules,
and cytokines/chemokines with functional roles in metabolic dysfunction, oxidative stress,
and ultimately inflammation [7,68,69,73,77,78].
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Figure 3. Overview of AGE-RAGE-mediated dysfunction. Lifestyle factors can combine to in-
crease AGE bioavailability, leading to the activation of RAGE signaling pathways. This leads to
the upregulation of key transcriptional regulators involved in metabolic and oxidative dysfunction,
predominantly through paracrine signaling. In a persistent feed-forward loop, increased metabolic
and oxidative stress can lead to further AGE formation, RAGE activation, and chronic inflammation.
P = phosphorylation.

3.4. The AGE-RAGE Inflammatory Cycle

By contributing to both endogenous AGE formation and their exogenous exposure,
lifestyle choices serve to exacerbate a persistent cycle of aberrant AGE-RAGE-mediated
inflammatory stress [8,73,77,78]. Aberrant RAGE activation is associated with disease-
associated metabolic, oxidative, and inflammatory dysfunction. By increasing AGE bioavail-
ability. lifestyle risk factors may exacerbate RAGE-mediated dysfunction and consequently
lead to further aberrant increases in metabolic, oxidative, and inflammatory stress. This
in turn perpetuates the inflammatory cycle by generating additional reactive carbonyls
that fuel non-enzymatic glycoxidation to further increase AGE formation. By exacerbating
a persistent cycle of aberrant RAGE-mediated inflammatory stress, lifestyle-associated
increases in AGE bioavailability may contribute to the current epidemics in chronic disease
burden [4–8,65,70,77,78].

4. ITCs Influence AGE-RAGE Function
4.1. Molecular Impact of ITCs on AGE Homeostasis

Increasing evidence supports that the inherent anti-inflammatory potential of ITCs
may negate AGE-RAGE pathogenic functions, and as such may represent a novel therapeu-
tic approach to prevent and/or treat multiple chronic conditions [61,63,79]. The literature
defines two predominant pathways for how ITCs can reduce AGE-mediated inflammation
(Figure 4). First, rates of non-enzymatic glycoxidation are governed by the available pool
of carbonyl precursors. By tempering the activation of metabolic and oxidative stress
pathways, ITCs may serve to reduce the reactive carbonyl pool that fuels non-enzymatic
glycoxidation to inhibit Schiff’s base and Amadori product generation and prevent AGE for-
mation. Second, AGE homeostasis is maintained at least in part by detoxification enzymes
that catalyze the formation of lactic acid via the condensation of reactive carbonyls. ITCs
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have been shown to increase the expression of detoxification enzymes such as glyoxalase
1 (GLO1) to reduce AGE bioavailability in diabetic models, which was associated with
decreased RAGE function as well as oxidative stress [80].
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Figure 4. ITCs may influence lifestyle-associated AGE function by inhibiting RAGE binding and
downstream effector function to inhibit oxidative and inflammatory pathways while increasing
detoxification pathways associated with AGE formation.

Two often interrelated molecular mechanisms have emerged that confer the anti-
inflammatory effects of ITCs. Nrf2 is a redox regulator with contrasting roles in conferring
disease phenotypes. In cancer, for example, Nrf2 can function as either a tumor suppressor
or a proto-oncogene, depending on cell context and the available prevailing environment.
Nrf2 plays a key role in the regulation of antioxidant reactions [81]. It has been shown
to inhibit AGE-mediated increases in fibronectin and TGF-β1 in glomerular mesangial
cells to play a role in diabetic neuropathy [82]. Interestingly, Nrf2 itself is heavily glycated,
which promotes Keap1-mediated Nrf2 degradation. Within the context of cancer, Nrf2
deglycation has been shown to be dependent upon the action of fructosamine-3-kinase [83].
NF-κβ is a key regulatory pathway inhibited by ITCs. Inhibition of NF-κβ by ITCs leads to
a reduction in the secretion of pro-inflammatory cytokines such as tumor necrosis factor
α (TNFα), interferon-α, IL-6, and IL-1β [79,84,85]. Associating these two regulatory path-
ways, ITC-mediated Nrf2 inhibition of NF-κβ has been shown to occur by two potential
mechanisms: (1) inhibition of oxidative stress-mediated NF-κB activation, and (2) inhibition
of NF-κβ activation through the upregulation of nuclear factor of kappa light polypeptide
gene enhancer in B-cells inhibitor alpha (IκB-α) [84–86]. Critically, activation of NF-κB
transcriptional function is a common mechanism conferring the pathogenic consequences
of AGE-RAGE signaling in chronic conditions that include diabetes, cancer, cardiovas-
cular disease, chronic kidney disease, neurodegenerative diseases, liver disease, and eye
degeneration [7,8,73,78].

4.2. Molecular Influence of ITCs on AGE-RAGE Function
4.2.1. Inflammation

While AGEs are negatively associated with multiple chronic diseases, T2D is regarded
as the archetypical AGE-associated disease due to its intrinsic association with insulin
resistance (IR) and hyperglycemia, both of which provide carbonyls for non-enzymatic
glycoxidation. Aberrant AGE-RAGE function leading to chronic inflammation is a key event
that plays a prominent role in the progression of diabetes-associated complications [53].
In contrast, in vivo and in vitro studies have shown efficacy for several ITCs in improving
glucose control, endothelial function, and IR, as well as reducing diabetic complications
such as vascular inflammation, neuropathy, and hepatic damage [54,87]. The reciprocal
molecular connections that exist between AGEs and ITC in diabetic patients focus largely
on Nrf2 regulation.
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SF has been shown to produce a dose-dependent reduction in glucose production
in rat hepatoma cells, which correlated with increased Nrf2 activity and the downreg-
ulation of gluconeogenetic enzymes (phospho-renolpyruvate carboxykinase 1, fructose-
1,6-bisphosphatase 1, and glucose-6-phosphatase catalytic subunit) [87]. In IR human
hepatocellular carcinoma cells, SF treatment also caused a dose-dependent increase in
glucose uptake and alleviated IR-associated phenotypes, including glucose tolerance and
insulin sensitivity [88]. Like SF, PEITC also increased the transcriptional activation of Nrf2
in adipocytes to improve glucose metabolism and insulin sensitivity [31,64]. In addition,
within the context of obesity-associated IR, BITC enhanced insulin sensitivity in a Nrf2-
dependent manner, lowering hyperglycemia in vivo and in vitro and potentially protecting
against obesity-related T2D [89]. Linking AGEs and Nrf2, Nrf2 itself is heavily glycated,
which can lead to its Keap1-mediated degradation. In nonalcoholic steatohepatitis and T2D
mouse models, Nrf2 function was inhibited and degradation was increased when exposed
to prolonged AGE treatment, conferred through chronic exposure to fructose [90]. This was
accompanied by increased RAGE expression and pro-inflammatory nicotinamide adenine
dinucleotide phosphate (NAD(P)H) oxidase activity. The direct therapeutic potential of
PEITC against AGE pathogenicity was demonstrated in streptozotocin-induced diabetic
Sprague Dawley rats. In this model, PEITC treatment was shown to improve renal function,
restore oxidative homeostasis, inhibit NLR family pyrin domain containing 3 (NLRP3)-
dependent inflammation, and suppress glycative stress in a dose-dependent manner to
potentially temper the AGE-RAGE-mediated cycle of inflammatory stress [91].

Mechanistically, inflammation is often tempered by SF through the inhibition of NF-κB
transcriptional activity, which reduces the expression of a series of inflammatory mediators.
These mediators include oxidative and immune regulators such as TNFα, inducible nitric
oxide synthase, IL-1β, interleukin-17, IL-6, IFN-γ, prostaglandins, and nitric oxide, many of
which also function as AGE-RAGE signaling downstream effectors (Figure 2) [50,57,61,92].
In a direct assessment of AGE function, SF downregulated neuroinflammation caused by
reactive carbonyl-induced AGE formation in BV2 microglial cells. This was once again
accompanied by the inhibition of RAGE, NF-kB, and MAPK-mediated signaling [93]. These
data suggest that SF may sequester reactive carbonyls, such as methylglyoxal, to temper
non-enzymatic glycoxidation.

Like other ITCs, AGE inflammatory effectors that are inhibited by PEITC include
NF-κB, focal adhesion kinase, ERK, protein kinase B, heat shock response, and MAPK.
Specific paracrine factors reduced by PEITC inhibition of NF-κB expression include TNFα,
IL-6, and IFN-γ [61,63,94]. Studies with other ITCs indicate possible associations with AGE
inhibition due to common regulated pathways, but these have not been assessed for AGE-
mediated affects. Treatment of Kupffer cells with BITC also showed inhibition of NLRP3
ubiquitination and subsequent activation, decreasing NLRP3-mediated inflammation and
IR [94,95]. AITC has shown efficacy in the treatment of allergy-induced asthma by reducing
inflammation and airway constriction through modulation of TRPA1 and ERK signaling
and MCP-1 [96].

4.2.2. Oxidation

AGE activation of RAGE is associated with a persistent cycle of oxidative and inflam-
matory stress (Section 3.3). Through the upregulation of antioxidant pathways, ITCs may
serve to at least in part negate the AGE-RAGE inflammatory cycle. As for inflammatory phe-
notypes, Nrf2 is again assigned a central role in the antioxidant responses driven by AGE
and ITC function. SF is an inducer of the cytoprotective response through Nrf2-mediated
transcriptional activation of antioxidant response elements [97,98]. Associating AGEs
with the same pathway, the protein deacetylase Sirtuin 1 has been shown to inhibit AGE
function to activate Nrf2/ARE antioxidative pathways in glomerular mesangial cells [82].
Providing further evidence, Nrf2-mediated activation of nicotinamide adenine dinucleotide
phosphate quinone oxidoreductase 1 (NQO1) was shown to represent a potential adaptive
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response against AGE-driven oxidative stress in diabetics [99]. Notably, SF also reduces
oxidative stress through the increased activity of NQO1 [36,97,100–102].

Directly linking SF with AGE-RAGE signaling, AGE treatment of human umbilical
endothelial cells (HUVECs), and also when injected into rat aortas, increased RAGE, oxida-
tive stress, intercellular adhesion molecule 1, vascular cell adhesion molecule 1 (VCAM-1),
and MCP-1 gene expression [103]. In the presence of SF, these AGE-mediated phenotypes
were reversed; NAD(P)H oxidase and oxidative stress were reduced in HUVECS and aortic
RAGE and ICAM-1 and VCAM-1 expression were reduced in rats. Of note, RAGE-Ab
pretreatment following SF treatment retained gene suppression of VCAM-1, suggesting that
whereas SF decreases RAGE expression, there may be additional mechanisms responsible
for some AGE-mediated changes [103].

As discussed, SF directly influences AGE-RAGE-mediated stress responses within the
context of diabetes [34,35,54,87,102]. The rescue of insulin sensitivity by SF, for example,
may represent a form of control through the control of glucose levels, which reduces the
generation of reactive metabolites that lead to AGE formation to inhibit non-enzymatic
glycoxidation. In support of this premise, AGE-related changes in ferroptosis are associated
with increased cardiomyopathy in diabetics. SF has been shown to inhibit AGE-mediated
increases in lipid peroxidation and the expression of the ferroptosis-associated factors Ptgs2,
the reactive carbonyl malondialdehyde, and MP-activated protein kinase phosphorylation,
possibly via Nrf2 activation [101]. SF-treated bovine retinal pericytes in a model of dia-
betic retinopathy also showed reduced AGE-RAGE-mediated ROS production as well as
apoptotic death compared to no treatment controls [56,104].

PEITC is also associated with the increased transcriptional activation of Nrf2 and
its associated cytoprotective pathways. Nrf2 activation by PEITC was accompanied by
reduced oxidative stress and glycolysis in prostate cancer cells [31,64]. PEITC was shown
to function in a Nrf2-dependent manner, protecting against oxidative stress-induced IR
within adipocytes (3T3-L1) by increasing the expression of anti-oxidative enzymes [64].
Potentially linking with histone glycation, PEITC also influences the epigenetic regulation
of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), where reduced
HDAC function has been shown to induce apoptosis and growth arrest in breast, prostate,
and pancreatic cancer models [105,106].

No direct studies, to our knowledge, have assessed the therapeutic potential of AITC
and BITC on AGE-RAGE function. However, AITC is also associated with reduced in-
flammation in diseases such as osteoarthritis and inflammatory bowel disease, and like
SF, this was conferred through the activation of TRPA1, ERK signaling, and the inhibition
of monocyte MCP-1 [107–109]. Elevated AGE levels are found in the lung, plasma, and
skin of patients with chronic obstructive pulmonary disease, causing extensive tissue dam-
age either directly or by functioning as a ligand to RAGE [110]. AITC treatment using
in vivo and in vitro models of COPD was shown to reduce oxidative stress through MRP1,
mediated by a reduction in AGE-RAGE-regulated IL-1β and TNFα [52,111–117]. AITC
has also demonstrated efficacy in the treatment of allergy-induced asthma by reducing
inflammation and airway constriction through modulation of TRPA1 [97]. In obesity-based
IR, BITC enhanced insulin sensitivity in a Nrf2-dependent manner, lowering subsequent hy-
perglycemia in vivo and in vitro, potently offering protection against obese T2D [89]. BITC
also directly increased the expression of Nrf2 in a model of indomethacin-induced gastric
injury, in which it down-modulated the NF-κB pathway and enhanced the expression of
NAD(P)H and NQO1 to control oxidative stress [118]. Treatment of Kupffer cells with
BITC showed inhibition of NLRP3 ubiquitination and subsequent activation, decreasing
NLRP3-mediated inflammation and IR [94,95].

4.2.3. Detoxification

In addition to direct effects on oxidative pathways, the antioxidant capacity of ITCs
may also be conferred by their ability to diminish the levels of reactive carbonyls through the
increased activity of phase II enzymes. ITC-mediated Nrf2 activation is associated with the
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upregulation of phase II enzymes, including glutathione transferases, NAD(P)H:quinone
reductase, epoxide hydrolase, heme oxygenase, and UDP-glucuronosyltransferase [97,98].
These enzymes function to reduce the levels of reactive carbonyls such as MGO, GO, and
3DG, which are potent AGE precursors. In cell-free assays, MGO has been shown to
be metabolized by phase II enzymes in the liver through the increased transcriptional
activity of Nrf2 [99]. Glo1 also sequesters reactive carbonyls to temper non-enzymatic
glycoxidation [80]. Elevated levels of AGEs are found in the brains of patients with
neurodegenerative disorders such as Alzheimer’s. In neuroblastoma cells, SF was shown to
reverse methylglyoxal-mediated glycative damage by reducing MAPK signaling (ERK1/2,
c-Jun N-terminal kinases, and p38). This was associated with the inhibition of caspase-3
activation and oxidative stress through the increased expression and activity of Glo1 [119].
Similar results were observed in primary cardiomyocytes upon SF treatment, and by SF and
AITC treatment in models of hepatoma and fibroblasts, all of which induced Glo1 activity to
lower reactive carbonyl levels through Nrf2 [120,121]. Assigning a further potential role for
ITCs in AGE detoxification, the direct glycation of histones is associated with disease-related
changes in chromatin architecture [121]. SF has been shown to reduce DNMT and HDAC
activity in prostate, breast, and colon cancer cells, tempering the inflammatory environment
by promoting Nrf2 expression to silence pro-inflammatory gene expression [122–124].

5. Discussion

Chronic diseases are the leading cause of death and disability within the United States,
accounting for around 70% of all deaths. Six in every ten Americans (~133 million) suffer
from at least one chronic disease, with one in four (over 43 million) suffering from multiple
chronic conditions [125]. The increased chronic disease burden in developed countries is
widely recognized as being driven in no small part by social, environmental, and biological
risk factors that sustain chronic low-grade inflammation [9,10,125]. As a natural pathophys-
iological consequence of multiple lifestyle factors, the increased accumulation of AGEs is
being increasingly recognized as an inflammatory-associated health risk factor that plays a
major role in promoting multiple chronic conditions. Strategies to reduce AGE exposure
across the lifespan therefore may represent a viable option to reduce chronic disease risk
and outcomes in later life.

Therapeutic natural products are an alternative option to man-made drugs that may
offer a more cost-effective and health-conscious option to temper or prevent chronic in-
flammatory phenotypes. By assigning ITCs with efficacy against the cycle of pathogenic
AGE-RAGE-induced oxidative and inflammatory stress, research supports that when con-
sumed in the diet or by supplementation, ITCs may represent a therapeutic option to
address increasing AGE exposure due to the modern lifestyle. The evidence assigning ITCs
with therapeutic potential against AGEs is largely inferred by their reciprocal regulation
of common molecular factors involved in regulating inflammatory phenotypes and their
positive and negative influence on chronic disease outcomes. While many studies are in
their infancy, a growing body of evidence supports direct molecular effects for several ITCs
on AGE formation, bioavailability, and or function.

The increased formation and bioavailability of AGEs is a direct consequence of exces-
sive carbonyl presence, often generated by metabolic and oxidative processes associated
with inflammation. By their nature, the antioxidant and anti-inflammatory function of
ITCs serve to reduce the pool of reactive carbonyls that fuel non-enzymatic glycoxidation
to prevent AGE formation. This is conferred either through the downregulation of pro-
inflammatory mediators that lead to carbonyl formation, and/or through the upregulation
of detoxification enzymes responsible for the direct reversal of reactive carbonyls. This is
significant because increased carbonyl formation is a direct molecular consequence of the
modern lifestyle, which fuels non-enzymatic glycoxidation to increase both endogenous
AGE formation and exogenous AGE exposure. As a result, this has significantly amplified
our exposure to AGEs over the life course, which coincides with the epidemic increases
seen in chronic disease occurrence. The antioxidative and anti-inflammatory action of ITCs
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may therefore serve to inhibit the persistent cycle of AGE-RAGE-mediated metabolic and
oxidative stress exacerbated by reactive carbonyls, accumulated due to lifestyle-associated
health risk factors.

6. Conclusions

We have presented a large body of evidence, both directly and by association, im-
plicating ITCs as having therapeutic potential against AGE biogenesis and inflammatory
phenotypes. Specifically, a search of the literature defined inflammation, oxidative stress,
and metabolite detoxification as key drivers of disease onset and progression for multiple
chronic conditions that are reciprocally regulated by ITCs and AGEs, possibly through
molecular effects on NRF2 and NF-kB function. Further research is needed to confirm these
direct associations between ITCs and AGE biogenesis, as well as identify new molecular
associations within multiple cell types, tissues, and disease types. In addition, however, it
is critical to acknowledge that there are a lack of clinical trials that directly assess the ability
of ITCs to reduce AGE biogenesis and pathogenic function in humans, which are needed to
confirm the true efficacy of ITCs against AGE biogenesis. One goal of this review was to
bring the therapeutic relationships that exist between ITCs and AGEs to the attention of
the scientific community, in order to generate interest in conducting such trials.

In particular, finely targeted studies and clinical trials that define the ability of ITCs to
prevent or reverse the negative impact of lifestyle-associated AGEs represent a focus point
for diet and supplement-based (“food as medicine”) intervention trials to reduce chronic
disease outcomes.
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